Ders Anlatım Eğitim Blogu,Öss,Sbs,Dersler

fizik, kimya, biyoloji, ingilizce, öss, sbs, öğretmenler

 

Hayvanlarda olduğu gibi, insanda da vücuda biçim veren, iç organları koruyan, vücudun dik durmasını ve aktif hareket etmesini sağlayan sistem vardır. Bu sisteme destek ve hareket sistemi denir. İskelet ve kaslardan oluştuğu için iskelet ve kas sistemi de denir. Canlıların hareketini sinir sistemi ve endokrin sistem düzenler ve denetler.
Hareketler kas, kemik, ve eklemin birlikte çalışmasıyla gerçekleşir. İnsanda, destek ve hareket sistemi elemanı olan kemik doku, iskelet adını alır.

A. İNSANDA İSKELET

İnsanda iskelet sistemi, vücudun çatısını oluşturur. İskelet sistemi hareketi sağlamanın dışında iç organları koruma, kas ve iç organlara bağlanma yüzeyi oluşturma görevi de yapar. İskeleti oluşturan kemikler kalsiyum deposu olarak iş görür. Aynı zamanda kemiklerde kan hücreleri de meydana gelir.
İskelet, anne karnında sekizinci haftaya kadar kıkırdaktır, daha sonra kemikleşme başlar. Doğumdan sonra kemik gelişimim kalıtsal, bünyesel ve çevresel faktörler etkiler.

Kemik Yapısı ve Çeşitleri
İnsan iskeletin! oluşturan kemikler, şekillerine göre dört grupta incelenir;

1.Uzun Kemikler: Kol ve bacaklarda bulunur. İki ucu şişkin silindirik kemiklerdir. Kemiğin boyuna uzamasını baş kısmı ile gövdesi arasında bulunan kıkırdak doku sağlar. Bir süre sonra kemikleşir. Bundan sonra kemiğin uzaması eklem kıkırdağı tarafından devam ettirilir. En dışta enine büyümeyi ve onarılmayı sağlayan kemik zarı (periost) vardır. Baş kısmında dışta ince tabaka halinde sıkı kemik dokusu ortada süngerimsi kemik doku bulunur. Gövde kısmı tamamen sıkı kemik dokudan yapılmıştır. Ortadaki boşluğu sarı kemik iliği doldurur. Süngerimsi kemik dokuda ise kırmızı kemik iliği bulunur.

2. Kısa Kemikler: Hemen hemen boy ve genişliği birbirine eşit olan kemiklerdir. Kısa kemikler dıştan kemik zarı ile sarılmıştır. Kemik zarının altında sert kemik, ortada ise süngerimsi kemik bulunur. Süngerimsi yapıda kırmızı kemik iliğine rastlanır. Kısa kemiklerde kemik kanalı bulunmaz. El ve ayak parmakları kısa kemiklerdir
3.Yassı Kemikler: Kalınlığı eni ve boyundan az olan kemiklerdir. Göğüs, kafatası, kürek ve kaburga kemikleridir. Kemik zarı altında sıkı kemik dokusu ve bunun ortasında süngerimi kemik doku yer alır. Kırmızı kemik iliği ile doludur. Sarı kemik iliğinin yer aldığı bir kanal yoktur.
4.Düzensiz şekilli kemikler: Değişik şekillerde olan ve genellikle diğer bir kaç kemikle bağlantı kuran kemiklerdir. Örneğin, omurlar, bazı yüz kemikleri gibi.
İnsan iskeleti yaklaşık 207 kemikten oluşmuştur. İskeleti oluşturan kemik sayışı 207 olarak belirtilmesine rağmen, bazı kaynaklarda bu sayıya kulak (6) ve dil (1) kemikleri de eklenerek sayı artırılmıştır. Bazı kaynaklarda ise kuyruk sokumu ve sağrı omurları birleşmiş olarak kabul edildiğinden, kemik sayışı daha az gösterilmiştir, iskelet baş, gövde ve üyeler iskeleti olarak üç bölümde incelenebilir .
e. Oval Kemikler: Örnek dizkapağı kemiği.

İNSANDA İSKELET YAPISI
İnsanda iç iskelet kemikten yapılmıştır. İskelet oluşturan kemikle yapısal olarak üç kısımda incelenir.
İNSAN İSKELETİNİN KISIMLARI:
207 kemikten oluşan insan iskeleti baş, gövde, üyeler olmak üzere üç kısımda incelenir

1.Baş İskeleti: Beyin, beyincik ve sinir merkezlerini içinde bulundurur. Kafatası ve yüz iskeleti olarak iki kısımda incelenir.
a)Kafatası İskeleti: Alın(1), yan kafa (2), art kafa(1), şakak(2), temel(1) ve kalbur(1) kemiklerinden oluşur. Oynamaz eklemlerle birbirlerine bağlanırlar. Beyin ve beyinciği tamamen kapatarak korurlar. Yalnız omurilik ve sinirlerin giriş çıkışlarını sağlayan delikler vardır.
b)Yüz İskeleti: Tırnakçık(2), elmacık(2), burun(2), sapan(1), boynuzcuk(2), üst çene(2), damak(2), alt çene(1) kemiklerinden oluşur. Oynamaz eklemlerle birbirine bağlanmıştır. Sadece alt çene kemiği yarı oynar eklemlerle şakak kemiğine bağlıdır

2.Gövde İskeleti: Sinir sistemi ve iç organları korur. Vücudu dik tutar. Gövdeyi oluşturan kemikler, omurga, kaburga, göğüs, omuz ve kalça kemiklerinden oluşmuştur. Omurga, boyundan kuyruk sokumuna kadar uzanan 33 omurun üst üste gelmesi ile oluşmuştur. Her omurda iki yan çıkıntı, bir dikensi çıkıntı, omur cismi, omur deliği, omur yayları ve eklem çıkıntıları vardır. Üst üste gelen omurlar kıkırdak disklerle birbirine bağlanarak omurgayı oluştururlar. Omurlar üst üste geldiğinde omur delikleri birleşerek omurga kanalını oluştururlar. Omurga kanalını omurilik doldurur. Omurga ortalama 75 cm uzunluğunda, dirençli ve bükülgen, uzun, ‘S’ şeklinde bir kemik dizisidir. Omurga bütünüyle ekle alındığında dört eğrilik göze çarpar: Öne doğru dışbükey boyun eğriliği; öne doğru içbükey sırt eğriliği(kifoz); öne doğru dışbükey bel eğriliği (lordoz); öne doğru içbükey sağrı eğriliği. Omurga beş bölgeye ayrılır.
1. Boyun (7)
2. Sırt (12)
3. Bel (5)
4. Sağrı (5)
5. Kuyruk sokumu (4)

Boyun bölgesinin birinci kemiğine atlas kemiği, ikinci kemiğine ise eksen kemiği denir.İç içe geçmişlerdir. Boyunun sağa sola dönmesini sağlarlar. Sırt bölgesi 12 omurdan oluşur. Kaburgalar bir uçları ile sırt omuruna bağlanırlar. Bel bölgesi 5 omurdan oluşur. Vücudun hiçbir kısmıyla bağlantılı olmadığı için kolaylıkla hareket edebilir. Sağrı bölgesi 5 omurdan oluşur. İnsanın dik durması ve yürümesinde etkili olan bölgedir.Kuyruk sokumu 4 omurdan oluşmuştur. Bu omurlar birleşerek tek omur halini almıştır.
Göğüs kemiği vücudun göğüs bölgesinde yer alan üst kısmı geniş, alta doğru sivrilen yassı bir kemiktir. Vücudun göğüs kısmında yer alan 15-20 cm boyundaki bu kemiğe göğüs kemiği denir. Sap, gövde ve hançerimsi çıkıntı olmak üzere üç kısımdan oluşmuştur.
Üzerinde enine ibikler ve kas-bağ bağlantı yerleri bulunur. On iki çift olan kaburgaların ilk yedi çifti göğüs kemiğine, sekiz, dokuz ve onuncu çiftler ise yedinci kaburgaya bağlıdır. Son iki kaburganın uçları serbesttir. Yüzücü kaburgalar denir.
Omuz kemerleri önde köprücük (2), arkada kürek (2) kemiğinden oluşur. Kalça kemeri kalça, oturga ve çatı kemiklerinden oluşur. Kalça kemikleri birbirleriyle ve sağrı bölgesi kemikleriyle birleşerek leğen denilen yapıyı oluşturur. Leğen gövdeye bağlanarak karın bölgesindeki iç organlara alttan desteklik sağlar.

3.Üye İskeleti:
Omuz kemeri ve kalça kemeri ile gövdeye bağlanır. Omuz kemeri, önde köprücük, arkada kürek kemiğinden oluşur. Bir ucuyla göğüs kemiğine, bir ucuyla kürek kemiğine bağlanır. Kalça kemeri, kalça, oturga ve çatı kemiğinden oluşur. Bu kemikler önden birbirleriyle, arkadan sağrı omurlarıyla kaynaşarak leğen kemiğini oluşturur. Bu yapı gövdeye bağlanarak karın boşluğundaki organlara alttan desteklik verir ve korur.
Kollar, bir pazu kemiği, bir ön kol, bir dirsek, sekiz el bilek, beş el tarak, on dört el parmak olmak üzere her biri otuz kemikten oluşur. Ön kol kemiği, dirsek kemiği tarafına dönme yeteneğindedir. Böylece elin ve dışa dönüşü sağlanır.
Bacak kemikleri, bir uyluk, bir diz kapağı, bir baldır, bir kaval, yedi ayak bilek, beş ayak tarak ve on dört ayak parmak kemiği olmak üzere otuz kemikten oluşur. Uyluk kemiği vücudun en uzun ve en sağlam kemiğidir. Üstte, yuvarlak ucuyla kalçadaki eklem çukuruna girer. Bacağın alt kısmında önde bulunan kemiğe kaval, arkada bulunan kemiğe baldır kemiği denir. Kaval kemiği üstten, uyluk kemiğinin alt ucuyla diz eklemini oluşturur.
Diz kapağı kemiği, diz eklemini korur. Ayak iskeletinde bilek kemiklerinin ikisi kaynaşarak topuk kemiğini oluşturur. İnsanlar topuk ve parmaklarıyla yere basarlar.

a)Kol Kemikleri: Pazı(1), ön kol(1), dirsek(1), bilek(8), tarak(5), parmak(14)
b)Bacak Kemikleri: Uyluk(1), dizkapağı(1), kaval(1), baldır(1), bilek(7), tarak(5), parmak(14)

2. Eklem Yapısı ve Çeşitleri
Kemikler, yan yana ve uç uca geldiklerinde görevlerine ve hareket durumlarına göre aralarında bağlantılar yaparlar. Bu bağlantılara eklem denir. Eklemler hareket derecesine göre üç bölümde incelenir:
Oynamaz Eklemler: Kafatası gibi iskeletin hareket etmeyen kısımlarındaki kemiklerde görülür. Kemikler, çok sıkı şekilde birbirine testere dişi gibi girinti ve çıkıntılarla bağlıdır (Şekil 3.14).
Az Oynar Eklemler: Hareketleri sınırlı olan eklemlerdir. Omurların eklemleri bu tiptir. Omurlar birbiri üzerine doğrudan doğruya binmezler, aralarında fibröz kıkırdaktan yapılmış yastıklar (diskler) vardır. Aynı zamanda omurlar birbirleriyle ligamentler (kirişler) aracılığıyla bağlanmıştır. Kaburgaların göğüs kemiği ile yaptığı eklem de az oynar ekleme örnektir. Omurlarda disklerin kaymasıyla bel fıtığı denen omurga rahatsızlıkları oluşur.
Oynar Eklemler: Çoğunlukla vücudun hareket görevini üzerine almış kemikler arasında görülen tam hareketli eklemlerdir. Bu eklemlerde, iki kemikten birinin çıkıntısı ile diğerinin girintisi birbirine uyacak şekildedir (Şekil 3.15). İki kemiğin arasında sinoviyal boşluk olduğundan kemiklerin serbest hareket etmesi sağlanır.. Eklem kıkırdakları kemiklerin uçunu örterek hem onlara uçlarda düzgünlük verir; hem de kısmen esneklik kazandırır. Sinoviyal boşluğu içten saran sinoviyal zar vardır. “Sinoviyal zar”, kan ve lenf damarların-dan sinoviyal sıvıyı (eklem sıvısı) süzmeye yarar. Bu sıvı eklemlerin kaygan olmasını sağlar. İleri yaşlarda eklem katılaşmaları bu süzme görevinin bozukluğundan olur. Eklemleri oluşturan kemikler birbirlerine ligamentler ve kısmen kaslarla bağlanır. Eklemlerin üzerinde eklemi koruyan eklem kapsülü bulunur.

İSKELET HASTALIK VE RAHATSIZLIKLARI
İskeletle ilgili hastalıklar kemikleri(kırıklar, iltihaplar, kanserler vb.) ve eklemleri etkiler (çıkıklar, artrozlar vb.) etkiler.
Kırıklar: Doğrudan doğruya kemik üzerine veya çevre dokulara etki eden darbeler ve çarpmalar sonucunda kemik dokusu bütünlüğünün bozulmasına kırık adı verilir. Dokuların zayıflamasına bağlı olarak kendiliğinden oluşan kırıklar da görülmekle birlikte, kırıkların büyük bir çoğunluğu travmalar nedeniyle meydana gelir. Darbenin şiddetine ve niteliğine göre kemiklerde çatlaklar ve iki veya çok parçalı kırıklar ortaya çıkabilir. Kemik parçaları yaradan dışarı çıkıyorsa açık kırıktan söz edilir. Klinik açıdan kırık tanısı radyografilerle konur ve değişik şiddette ağrılarla beraber işlev kaybının bulunmasıyla kendini gösterir.
Tedavinin temeli, zarar gören kemik parçalarının cerrahi yöntemlerle yerine yerleştirilmesinden sonra vücudun o bölümünün hareketsizleştirilmesine dayanır. Basit kırıkların tedavisi için dış ateller yeterli olur. Buna karşılık parçalı kırıkların tedavisinde cerrahi girişime baş vurulur ve vücutta yabancı cisim tepkimelerine yol açmayan metal çiviler, levhalar ve çubuklar kullanılır. Hareketsizleşme süreci içinde vücut kendi kendine yeni bir kemik dokusu üreterek kırık yerin kaynamasını sağlar. İlk dönemde kırık parçaları arasında kalan boşluk kan ve lenfle dolar; bu sırada bağ dokusu tomurcukları kan pıhtısının içine yerleşerek bir bağ dokusu nedbesi yaratır. Daha sonra kan damarları aracılığıyla komşu kemiklerdeki kalsiyum depolarından sağlanan kalsiyum, nedbenin mineralize olmasını sağlar. Damarca zengin kemik zarı bu dönemde önemli bir rol oynamaktadır. Kemik dokusunun eski halini kazanabilmesi daha uzun bir sürede gerçekleşebilir.
Kemik İltihapları: Kemik dokusunu etkileyen iltihabi hastalıklar mikrobik, paraziter(asalaklara bağlı) veya kimyasal kaynaklı olabilir. Genellikle alçı uygulanması ve antibiyotiklerin kullanılması hastalığın tedavisi için yeterli olur.
Büyüme ve Kireçleşme Bozuklukları: En önemli büyüme bozukluğu olan cücelik boyun yetersiz uzaması demektir. Cücelik hormon bozukluğuna bağlı olabileceği gibi metabolizma bozukluklarına da bağlı olabilir. Nadir görülen bir kalıtımsal hastalık olan akondroplazide ise kemik büyümesini sağlayan büyüme kıkırdakları çok erken yaşta kapanır.
Aşırı boy uzaması ve irileşme ile kendini gösteren jigantizm hastalığı bazı durumlarda hipofizin aşırı çalışması ve büyüme hormonunun fazla miktarı üretilmesi nedeniyle oluşur. Bu hastalığa yakalanan kişilerde iri cüsseye rağmen, kas gücü normalin altındadır ve hassas bir yapı bulunur.
Kemiklerde ilerleyici kireçsizleşmeye yol açan ve kemik erimesi olarak da bilinen osteoporoz özellikle menopoz dönemindeki kadınlarda ortaya çıkar. Hastalığın nedeni hormon düzeninin bozulmasıdır.
Ur Hastalıkları: Vücudun bütün diğer organları gibi kemiklerde de habis urlar ortaya çıkabilir. Ur kemik dokusundan kaynaklanabileceği gibi başka bir organdan kaynaklanan bir metastaza da bağlı olabilir. Kemik dokusundan çıkan osteosarkom daha çok çocuklarda ve gençlerde bacak kemiklerinde görülür. Daha sık rastlanan ikincil kanserler sıklıkla ileri yaşlarda ortaya çıkar; bunlarda şiddetli ağrılar ve kemik dokusunun ileri derecede hassas hale gelmesi gibi belirtiler bulunur.
Eklem Hastalıkları: Travmalardan ileri gelen eklem hastalıklarına örnek olarak burkulmalar ve çıkıklar sayılabilir. Ayrıca yeni doğanda doğuştan kalça çıkığı adı verilen bir durum görülebilir. Romatolojik hastalıklar sınıfında yer alan diğer iki önemli eklem hastalığıda artroz(eklem kıkırdağının tahrip olması) ve artrittir.(eklem boşluğunu kaplayan dokunun iltihabı)

KAS SİSTEMİ
Kaslar kasılabilen, dolayısıyla da hareketleri sağlama özelliği olan yapılardır. Vücuda desteklik eder, hareketi sağlar, vücut ısısını meydana getirir. Ayrıca iç organları bağlar ve onları askıda tutar. Çeşitli organizmalarda farklı kas tipleri vardır. Protistlerde çizgisiz kas telcikleri bulunur. Basit özellikte olmasına rağmen bir tek hücreli olan paramesyum da kontraktif kofullar kas işlevi görür. Omurgasızlarda ise çoğunlukla düz kaslardan oluşur. Yavaş ve ritmik kasılırlar. Solucanlarda, yumuşakçalarda düz kaslar bulunur. Eklembacaklılarda uçma ve sıçramayı sağlayan çizgili kaslar bulunur. Tüm omurgalılarda iskeleti hareket ettiren çizgili kaslar, yemek borusunda, midede, bağırsaklar, kan damarlarının duvarlarında, üreme organları ve diğer organ duvarlarında ise düz kaslar bulunur. Kaslar düz kas, çizgili kas ve kalp kası olmak üzere üç çeşittir.
1.Düz Kaslar: Hücreleri mekik şeklindedir. Büyüklükleri bulundukları yere göre değişir. Çekirdekleri hücrenin orta kısmında bulunur. Tek çekirdeklidirler. Sitoplazmasına sarkoplazma, hücre zarına ise sarkolemma denir. Sitoplazmada görülen, boyuna iplikçiklere ise miyofibril denir. Miyofibriller, aktin ve miyozin denilen kas proteinlerinden oluşmaktadır. Kasılmayı bunlar sağlar.
Düz kaslar istem dışı hareket eden kaslardır. Kasılmaları yavaş ve düzenlidir. Otonom sinir sistemi kontrolünde çalışırlar. Eklembacaklılar hariç tüm omurgasızlarla omurgalıların dolaşım, sindirim, solunum gibi sistemleri meydana getiren organların duvarlarında önemli ölçüde düz kaslar bulunur.
2.Çizgili Kaslar: İskelet sistemiyle bağlantılı olan kaslardır. Beyin kontrolünde isteğe bağlı olarak çalışırlar. Kasılma hareketleri merkezi sinir sistemine ait motor sinirlerle kontrol edilir. Düz kaslara oranla daha hızlı kasılabilirler.
Hücreleri uzun ve silindirik şeklinde olup hücre sınırları belirsiz olduğundan çok çekirdekli görülürler. Oval şekilli çekirdekler hücrenin kenar kısmında bulunurlar. Bir çizgili kasın yapısı tüm bir kastan yapı birimlerine doğru; kas demeti, kas teli, telcikler (miyofibril, aktin ve miyozin proteinleri) olarak sıralana bilinir. Sarkoplazma içinde miyofibriller arasında dağılmış zengin bir endoplazmik retikulum ağı (sarkoplazmik retikulum) vardır. Miyofibriller özel bir diziliş gösteririler. Bu diziliş açık ve koyu bantlar meydana getir.

Kas liflerinde açık renkli görülen I bandı, koyu renkli görülen A bandı olarak isimlendirilir. I bandını tam ortasında koyu renkli ince çizgi Z bandı olarak adlandırılır. A bandının ortasında görülen bölgeye ise H bandı adı verilir. Kas dokusunda ard arda gelen iki Z bandı arasındaki bölgeye sakromer denir ve kasılma birimi olarak kabul edilir. Miyofibriller çok daha ince ipliklerin düzenlenmesiyle meydana gelmişlerdir. Bunlardan kalın ve kısa olanlarına miyozin, ince ve uzun olanlarına ise aktin iplikleri denir. Bu ipliklerin temel yapıları proteindir.

Miyozin iplikleri komşu I bandına geçmezler. Aktin iplikleri ise I bantların meydana getiriler ve kısmen iki taraftan A bandının içine girerler. Böylece A bantlarının ucunda miyozin ve aktin iplikleri bulunurken orta kısımlarında sadece miyozin iplikleri yer alır. Sadece miyozin ipliklerinden oluşan bu kısım H bandını meydana getirir. Aktin iplikleri I bandının ortasında birleştikleri yere de Z çizgisi denir. Kasa çizgili görünüm bu şekilde kazandırılmıştır. I bandı yalnız aktin ipliklerinden, H bandı yalnız miyozin ipliklerinden, A bandı ise hem aktin hem de miyozin ipliklerinden oluşur.

Kas Proteinlerinin Sıralanışı: Kas telleri aktin ve miyozin proteinlerinden başka hemoglobine benzeyen miyoglobin proteinini içerirler. Miyoglobinin görevi kaslarda O2 azaldığı zaman kandan O2 almak ve oksidasyonu sağlamaktır. Miyofibrilin O2’e bağlanma kapasitesi hemoglobinden fazladır. Çizgili kasların kemiklere bağlandığı yerler sıkı bağ dokudan yapılmıştır. Bunlara kas kirişleri veya tendonlar denir. İskelet kasları bir taraftan hareketli bir kemiğe bağlanırken diğer taraftan mutlaka hareketli bir ekleme bağlanmışlardır. Kemiğe bağlandığı nokta başlangıç noktası, ekleme bağlandığı nokta sonlanış noktasıdır. Bu iki tutunma arasında kalan kısım karın kısmıdır. İskelet kasları çoğunlukla çiftler halinde çalışırlar.
3.Kalp Kası: Çizgili kas olmasına rağmen irademiz dışında kasılma faaliyeti gösteriri (Otonom sinir sistemine bağlıdır). Bu kas enine bantlaşma gösterir. Kas telleri kısa boylu olup tek çekirdeklidir. Birbirine bağlandıkları yerde ara diskler bulunur. Sürekli çalıştıkları için oksijen gereksinimleri çok fazladır.

KAYAN İPLİKLER HİPOTEZİ
Bu hipoteze göre kasılma aktin ve miyozin ipliklerinin hareketine bağlı olup ince aktin iplikçiklerinin kalın miyozin iplikçiklerinin üzerinden kaymasıyla gerçekleşir. Miyozin iplikçikleri hareket etmez, aktin iplikçiklerinin boyları kısalmaz ama iki elin parmakları gibi iç içe geçerek kayarlar. Kasılma sırasında A bandını boyu değişmezken I bandı kısalır, H aralığı yok olur. İki Z çizgisi birbirine yaklaşır. Böylece kas kasılması gerçekleşir..

Gevşeme anında ise tam tersi gerçekleşir. Kas eski özelliğine kavuşur. Bu mekanik olayda bazı kimyasal maddeler görev aldığı gibi çok miktarda da enerji harcanır. Kaslar enerjinin yoğun üretildiği ve harcandığı yerlerdir. Bu yüzden kas hücrelerinde ve özellikle kalp kasında mitakondrilerin sayısı oldukça fazladır. Antagonize Hareket: İskelet kasları genelde çiftler halinde çalıştığından her grup birbirinin tersine hareket eder. Biri kasılırken diğerinin gevşeyip uzaması şeklinde gerçekleşen bu harekete antagonist hareket denir. Kalpte kulakçık ve karıncıkların kasılıp gevşemesi ile kol ve bacakların bükülmesi buna örnektir. Bu tür kaslara antagonist kaslar denir. Eklem dik ve hareketsiz kalırsa her iki grup kas da aynı anda kasılıp gevşer. Bu tür kaslara ise sinerjist kaslar denir.

KAS SARSISI
Bir kasa kısa süreli bir uyarının etki ettiğinde kas önce kasılır, sonra gevşer ve eski halini alır, bu olaya kas sarsısı (kasıl sarsılma) denir. Kas sarsısını ölçen alete miyograf denir. Bu aracın çizdiği grafiğe de miyogram denir.
Bir kas sarsısı üç evrede tamamlanır.
I.Gizli Faz: Uyarmanın alınması ile kasın kasılmaya başlaması sırasında geçen faz.
II.Kasılma Fazı: Kasın giderek kalınlaşıp kısaldığı faz.
III.Gevşeme Fazı:Kasın kasıl durumundan ilk halini alıncaya kadarki faz. Dinlenme fazına geçmeden kasa üst üste verilen uyartılar, kasın normalden fazla kasılmasına neden olur. Bu olay birikim denir. Birikimde tek tek kas sarsılarının birbirine katılmasıyla uyum içinde kuvvetli kas hareketleri olur.

Fizyolojik Tetanoz ve Tonus: Çizgili kasların uyarılarak kasılmasını beyin ve omurilikten gelen sinir impulsları sağlar. Kas hücrelerinin hepsi bir veya birkaç noktadan sinir hücreleriyle temas halindedir. Bir kas, kısa aralıklarla sıkı sık sinir impulsları ile uyarılırsa sürekli bir kasılma hali gösterir. Buna fizyolojik tetanoz adı verilir. Fizyolojik tetanos halindeki kas gevşemez. Normal bir kas dinlenme halinde bile hafif kasılı durumdadır. Buna tonus denir. Felç ve baygınlık dışında kaslar tonus halindedir. Felç gibi nedenlerle hareket yeteneğimizin kaybolması kasların bozulmasından değil, kaslara uyartı taşıyan sinirlerin zedelenmesinden dolayıdır. Tonus uyartılara daha çabuk cevap vermemizi sağlar.
Kasılma miktarı

Zaman
Fizyolojik Tetanoz

KASILMANIN KİMYASAL AÇIKLAMASI
Çizgili kaslar miyelinli sinir lifleri ile uyarılır. Sinir uçları kas hücreleri üzerinde bir çok kollara ayrılarak sonlanır. Bu noktalara motor plak denir. Sinir ve kas hücrelerinin bir araya geldiği bölgede sinir hücreleri tarafından bir tür sinir hormonu (nörotransmiter) olan asetilkolin salgılanır. Asetilkolin hormonunun görevi kas hücrelerinin endoplazmik retikulumlarında depo edilmiş bulunan Ca++ iyonlarını aktin ve miyozin proteinlerini arasına yaymak ve kasılma hareketini başlatmaktır. İşte kasılma olayı bu değişmelerle birlikte başlar. Kas telcikleri kasılır.
Kasın kasılması için gerekli uyarı şiddetine eşik şiddeti denir. Kasın bir kez kasılıp gevşemesine de kasıl sarsı denir. Bir sarsılmanın olabilmesi için uyarın belli bir şiddetten yukarı olması gerekir. Daha hafif şiddetteki uyarılara, kas cevap vermez, sarsıntı olmaz. Uyarının şiddeti arttıkça kasılmada belli bir dereceye kadar fazlalaşır. Ancak öyle bir an gelir ki, şiddet ne kadar artarsa artsın kasılmanın derecesi değişmez.
Kalp kasınsa ise durum farklıdır. Kalp kası her zaman daima verebileceği karşılığın en büyüğünü verir. Kalp kasının sarsı doğuran en küçük şiddetteki uyarana ve en büyük şiddetteki uyarana verdiği karşılık daima aynıdır. (Ya hep ya hiç kuralı)
Kasılma için gereken enerji ATP’den karşılanır. Ancak kasılma olayı çok fazla enerji harcanmasını gerektirir. Harcanan ATP’nin hemen sağlanması için yalnız kaslara özgü yedek enerji deposu mevcuttur. Bu yedek enerji deposuna kreatin fosfat (CP) denir. Kreatin fosfatın yüksek enerjili fosfatı kopar ve ADP ile birleşir. Böylece hemen ATP sentezi sağlanmış olur
• ATP (Ca++)ADP + P +Enerji
• Kasılma anında: Kreatin fosfat + ADP  ATP + Kreatin
• Dinlenme anında: Kreatin + ATP  Kreatin fosfat + ADP
Kreatin fosfatın buradaki görevi acil enerji ihtiyacını karşılamak için ADP’ye P vererek ATP üretmektir. Kasın çabuk ve sürekli hareketi bu şekilde sağlanır. ATP elde etmenin bir diğer yolu ise kastaki glikojenin glikoza, glikozu da glikoliz ile ATP’ye dönüştürmesidir. Glikoz olayı glikojen ile başlar ve pürivik asidin laktik aside dönüşmesi ile tamamlanır.
a) Zor ve uzun süreli hareketler sırasında, kas hücreleri kasa yeteri kadar oksijen taşıyamaz. Glikoliz laktik aside parçalanır.
Kas glikojeni  Glikoz  Pürivik asit  Laktik asit + 2ATP
Laktik asit, sinir uçları ile kas tellerinin arasını kapayarak uyartının iletilmesini engeller. Buna kas yorgunluğu denir. Dinlenme anında kasa yeteri kadar oksijen gelir. Laktik asidin çoğu glikojene dönüşür, bir kısmı da mitakondrilerdeki krebs çemberine girebilmek için pürivik aside dönüşür. Açığa çıkan enerji kreatin fosfatta depolanır. Bu şekilde laktik asit oksidasyonu sağlanarak kas yorgunluğu giderilir.
b) Kasa yeteri kadar oksijen geldiğinde hücre solunumu yapılır.
Kas glikojeni  Glikoz  Pürivik asit  6CO2 + 6H2O +38ATP
Açığa çıkan enerji daima kreatin fosfatta depolanır. Hücreler çok miktarda mitakondri kapsamazlar. Kreatin fosfat kasılma için gerekli olan enerjiyi sağlayan ATP’yi isteği anda meydana getirir. Fakat hücreler çok miktarda kreatin fosfat kapsamaz. Enerji önce glikojenden sağlanır. Kasların kasılması için yaralanılan enerji kaynağı kas glikojenidir.

KAS HASTALIKLARI
Güçsüzlük, felçler ve bunun gibi işlevsel bozukluklarla kendini gösteren kas hastalıklarını nitelendirmek için miyopati terimi kullanılır. Fakat, kasların işlevi sinir sistemine bağlı olduğu için bu terim yetersiz kalmaktadır. Günümüzde daha çok sinir-kas hastalıkları veya motor ünite hastalıları terimleri kullanılır.
Kastaki Hastalıklar: Kas liflerinde ortaya çıkan bozuklukların çoğu, bir tek genin hasarına bağlı, monogenik bozukluklardır; distrofik görünüm, kasın hacminin azaldığı atrofiler ve miyopatiler bunlara örnek verilebilir. Bu bozukluklar sonucunda kas işlevleri ya çok zayıflar yada felçler ortaya çıkar.
Motonörondaki Hastalıklar: Motonöronların akson uzantılarında veya hücre gövdelerindeki bozukluklar bu nöronların bağlantılı olduğu kas hücrelerini atrofiye uğramasına yol açar; bunun nedeni, hiçbir emir alamayan hücrenin işlev görememesidir.
Motorplaktaki Hastalıklar: Sinirle kasın birleştiği motor plakta, kas zarı üzerinde yer alan asetil kolin alıcılarında görülen bozuklular, sinirsel uyarının kasa gerektiği gibi geçebilmesini engeller ve kas yeterli cevabı veremez.
Sarkoplazmadaki Hastalıklar: Sarkoplazmik retikulum borucuklarındaki anormallikler, kalsiyumun toplanması ve pompalanmasıyla ilgili işlevsel bozukluklara yol açar. Bunun sonucunda anormal bir ısı çıkaran denetimsiz kasılmalar ortaya çıkar.
Bütün bu hastalıklar erken çocuk çağından yaşlılığa kadar yaşamın her döneminde ortaya çıkabilir. Neden oldukları klinik belirtiler kişiden kişiye veya aynı kişinin farklı kas gruplarında değişiklik gösterir.

Güneş enerjisi, cam gibi saydam maddelerden geçebildiği halde bazı maddelerden geçemeyerek yansır. Bazı maddeler tarafından da soğurulur. Güneş enerjisinin başka enerjilere dönüşmesi soğurulma ile olur. Örneğin; cisimlerin ısınması, güneş ışınlarının cisimler tarafından soğurulmasının sonucudur.
Bitkiler, soğurup tuttukları ışık enerjisini, kullanabilecekleri enerji türü¬ne yani adenozin trifosfat (ATP)a dönüştürür. Hücredeki yaşamsal olaylar için gerekli olan enerji, ATP’den sağlanır. Fotosentez sırasında ve besin moleküllerinin yapılmasın¬da enerji kaynağı olarak ATP kullanılır. ATP küçük bir molekül olmasına karşın, hücre¬nin tüm enerji gereksinimini karşılayabilir
Tüm canlılar doğrudan doğruya ya da dolaylı olarak güneş enerjisinden yarar¬lanırlar. Canlılarda gerçekleşen metabolizma olayları (yapım ve yıkım), kimyasal tepkimelerden başka bir şey değildir. Bu süreçte maddenin moleküler yapısı değişmektedir. Ve her kimyasal tepkimede, enerji değişimi olmaktadır.Canlı enerji giriş ve çıkısının sürekli yapıldığı bir sistem olarak tanımlanabilir.
Temelinde enerji kullanımı yatan bu tepkimeler, canlılar içinde geçerli olan du¬rumları ortaya çıkarır. Bu ise; evrendeki enerji yoktan var edilemez, var olan enerji de hiç bir şekilde kaybolmaz. Ve ısı enerjisi, enerjinin son dönüşüm şeklidir.
Bütün enerjilerin kaynağı güneştir. Güneş enerjisi bitkilerin yaptığı besinle, canlıdan canlıya geçer. Bir yaşama birliğinde ki, farklı beslenme özelliğinde olan canlıların bulunması bunu sağlar. Bununla birlikte her basamakta aktarılan enerji geçişi biraz azalır. Azalan enerji ısı enerjisine dönüşen ve sonuçta çevreye yayıla¬cak olan enerjidir.
Bitkiler, Güneş Enerjisini Dönüştürüp Hücrelerinde Tutabilen Canlılar¬dır
Bitkiler güneş enerjisini organik maddelerde kimyasal bağ enerjisi biçiminde depolarlar.
Işık enerjisinin kimyasal enerjiye dönüşümü ise klorofil tarafından gerçekleşti¬rilmektedir. Klorofil her ne kadar hemoglobine (kanın alyuvar hücrelerinde bulunan demirli yapı) benzese de, temel olarak, demirli değil, magnezyumlu bir pigmenttir. Bitkiler. hazırladıkları besin maddelerinin bir kısmını kendi yaşamsal faaliyetleri için kullanırken büyük bir bölümünü de depo eder. Bu nedenle yeşil bitkilere üretici (ototrof) canlılar denir.
Klorofiller, güneş enerjisini emerek ya da bir başka deyişle soğurarak kimyasal. enerjiye dönüştüren moleküllerdir. Kloroplastlarda bulunurlar. Bu yüzden kloroplast¬lara, güneş ışığı toplayıcısı da denilir. Klorofillerde ışık enerjisi hapsedilir. Hapsedi¬len bu enerji, karbon dioksit ve suyun bir çeşit şeker olan glikoza dönüştürülmesin¬de kullanılır. İşte güneş enerjisi bu temel besin maddesinde tutulan kimyasal ener¬jiye dönüştürülmüştür.
Bitkiler Işıkta Glikoz Sentezler
Glikoz üretimi için klorofilin varlığının gerekliliğini gördünüz. Bitki klorofil sente¬zini ışıkta gerçekleştirmektedir. Karanlıkta çimlendirilmiş bir tohumdan geliştirilmiş bir fide gün ışığı görmediği süre içerisinde yeşil olmadığı bilinmektedir. Bu da ışık özümlemesi için gerekli olan klorofilin sentezinin ışıkla gerçekleşeceğini gösterdi¬ğinden, güneş enerjisinin önemini bir kez daha ortaya koymaktadır.
Yeşil bitkiler havadan aldıkları, CO2 ve topraktan aldıkları suyu, güneş ışığı¬nın etkisi ile glikoza dönüştürmektedirler.

Proteinler;

Tüm canlıların yapısında, sudan sonra en çok bulunan temel yapı maddeleri proteinlerdir.Bu nedenle canlıların kuru ağırlıklarının yaklaşık yarısı proteinlerdir.
Proteinlerin yapıları karbon , hidrojen , oksijen elementlerinin yanı sıra azot elementinden oluşur.Proteinlerde ayrıca kükürt , fosfor gibi elementler de bulunabilir.
Proteinlerin yapıtaşları amino asitlerdir.Canlıların yapısında 20 çeşit amino asit bulunur.Amino asitlerin birbirlerine peptit (amid) bağlarıyla bağlanması (Dehidrasyonu veya peptitleşmesi) ile peptitler , polipeptitler ve proteinler entezlenir.
Aminoasitlerin R ile gösterilen değişken grubu herhangi bir atom ya da atom grubu olabilir.Böylece farklı aminoasit çeşitleri oluşur.Örneğin; R yerine hidrojen bağlanırsa glisin , CH3 grubu bağlanırsa alanin denilen aminoasit çeşitleri oluşur.Amino asitlerin n tanesi n-1 tane su vererek peptit bağlarıyla bağlanıp proteinleri oluşturur.Peptitleşme denilen bu olayı şöyle genelleştirebiliriz.

n(amino asit) Protein + (n-1) Su

Her canlıdaki , hatta bir canlının farklı dokularındaki protein çeşitleri birbirinden farklıdır.Bu da proteini oluşturan amino asitlerin çeşidi , sayısı ve sırasına yani dizilişini farkından kaynaklanır.Çünkü canlıların hücrelerinde her protein çeşidinin sentezini yöneten genler birbirinden farklıdır.
Hayvanların yedikleri proteinler sindirim organlarında sırasıyla pepton , peptit ve sonunda amino asitlere ayrılır.Hücrelere taşınan amino asitlerle canlının kendi proteinleri sentezlenir.
Proteinler canlılarda şu amaçlarla kullanılır:
1-) Hücrelerin yapım ve onarımında sadece protein ya da glikoprotein , lipoprotein halinde yapı elemanı olarak.
2-) Yaşamsal olayların düzenlenmesinde kullanılan enzimlerin oluşturulmasında . Örneğin solunum sindirim enzimleri gibi.
3-) Kasların kasılmasını sağlayan kasıcı protein olarak. Örneğin aktin ve miyozinler gibi.
4-) Çoğu doku ve organların çalışmasını düzenleyen hormon olarak. Örneğin kan şekerinin miktarını düzenleyen insülin ve glukagon gibi.
5-) Doku ve organlar arasında madde taşıyıcısı olarak. Örneğin , O2 ve CO2 taşıyan hemoglobin gibi.
6-) Hayvanların vücudunu yabancı maddelere karşı koruyucu olarak. Örneğin , kandaki antikorlar gibi.
7-) Toksin vb. maddelerin üretilmesinde. Örneğin , yılan zehirleri gibi.
😎 Depo proteinleri olarak. Örneğin , kandaki albümin gibi.
9-) Canlıda , enerji sağlamak üzere kullanılan karbonhirat ve yağlar yeterli olmadığında enerji verici olarak.Uzun süreli açlıkta olduğu gibi.
Hayvansal besinlerden kırmızı et , beyaz et , süt , yumurta ; bitkisel besinlerden fasulye , mercimek gibi baklagiller proteinler yönünden zengin yiyeceklerdir.Proteinlerin , canlılardaki en çok işleve sahip çeşidi enzimlerdir.

===========PROTEİN MOLEKÜLLERİNİN YAPISI==========
Hem hücrelerin oluşmasında , hem de işlevlerini gerçekleştirmelerinde temel maddeler proteinlerdir.Bu nedenle hücrelerin yaşamlarını sürdürebilmeleri , öncelikle protein sentezlemelerine bağlıdır.Hücrenin DNA’larındaki bilgilere uygun protein sentezi , “santral doğma” adı verilen aşağıdaki sırayla yapılır:
Transkripsiyon Translasyon
DNA RNA PROTEİN
(Yazılma) (Çeviri)

Hücrenin , her çeşit proteinin yapımını sağlayan bu olay , sırasıyla aşağıdaki gibi gerçekleşir:
1-) Yapılacak proteinlerle ilgili bilgilere sahip olan molekül , hücrenin çekirdeğindeki DNA’lardır.Her bir proteinlerle ilgili bilgi , iki iplikli DNA’nın anlamlı iplik denilen bir ipliğinden , elçi RNA’lara (mRNA) aktarılır.Oluşan mRNA’da en az , sentezlenecek proteindeki amino asit sayısı kadar kodon bulunur.DNA bilgilerini mRNA’ya yazılması anlamına gelen bu olaya transkripsiyon denir.
2-) DNA şifrelerini alan mRNA , çekirdek zarının porlarında sitoplazmaya geçer.Sitoplazmada , ribozomların küçük ve büyük alt birimleri arasına bağlanarak orada kalıp görevi yapar.
3-) DNA’ların , sentezleyip sitoplazmaya gönderdiği taşıyıcı RNA’lar (tRNA’lar) , antikodonlarına (tRNA’nın alt ucundaki , 3 nükleotitten oluşan kodonun karşılığına) uygun olan amino asitlerden her defasında bir tane alıp ribozomlara gelir.tRNA , antikodonuyla ribozomdaki mRNA’nın uygun kodonuna (mRNA’nın , 3 nükleotitten oluşan ve 1 amino asit bağlatmakla görevli kısmına) (nüleotitlerin ; G ile S , A ile U karşılıklı gelecek şekilde) bağlanır.Getirdiği amino asiti , ribozom üzerine aktarıp sitoplazmaya döner.RNA bilgilerini proteine çevrilmesi anlamına gelen bu olaya translasyon denir.Bu şekilde , her bir amino asidi taşıyan en az bir çeşit tRNA vardır.Bu nedenle , hücrede en az 20 çeşit tRNA dır.
4-) tRNA’ların , önce bağlanıp sonra ayrılmasıyla görevi biten mRNA kodonu ribozomdan kayarak boşa çıkar.Yerine , henüz görevini yapmamış mRNA kodonu gelir.
5-) Her amino asidin özel enzimleri ve ATP’nin enerjisiyle , ribozom üzerinde birbirine peptit bağlarıyla bağlanan amino asitlerden , istenilen protein sentezlenmiş olur. Yani bu olay ;
n( amino asit (a.a.)+a.a.+a.a.+….) …..Polipeptit zinciri (protein)+(n-1)H2O şeklinde gerçekleşir.
6-) DNA’dan verilip, mRNA ile taşınan kodonlara uygun protein sentezi , mRNA’nın bitirme kodonları geldiğinde (UAG, UAA ve UGA) tamamlanır. Belirli amino asitlerin , belirli sırayla bağlanmasından oluşan proteinler , yapı maddesi veya hücre enzimleri gibi düzenleyiciler olarak kullanılacağı yere aktarılır.
7-) Görevi biten ribozomlar , mRNA’lar , tRNA’lar da ,yapı birimlerine ayrılıp, gerektiğinde tekrar kullanılmak üzere sitoplazmaya dağılır.
Bu olaylar , aynı proteinlerden gerektiğinde , defalarca tekrarlanabilir. Ancak DNA’daki bilginin taşınması , ya da proteinlerin sentezi sırasında bir tek amino asidin bile yanlış bir yere bağlanması, önemli bir değişikliğe neden olabilir. Bazen , hücre için yaşamsal önemi olan bir enzimin üretilmemesi sonucu , ölüme bile neden olabilir. Örneğin , hemoglobinde , glutamik asit denilen amino asit yerine , valin adı verilen amino asit bağlanırsa , orak hücre anemisi adı verilen hastalık oluşur. Bu hastalarda hemoglobine oksijen bağlanamaz. Bu da ölümle sonuçlanabilir. Buna karşılık, 104 amino asitten oluşan bir solunum enziminde, 40 amino asidin yeri değişse bile enzim işlevi değişmeden kalabilir.

===========BİR POLİPEPTİT (PROTEİN) ZİNCİRİNİN SENTEZLENMESİ===========

DNA’dan mRNA şeklinde kopya edilen kalıtsal bilgi , protein sentez düzeneği ile amino asit dizilimine çevrilir. Bu çevrimi “Translasyon”denir.
Protein sentezi , çekirdekli hücrelerde özellikle çekirdeğin dışında , yani sitoplazmada meydana gelir. Bununla beraber belirli koşullar altında çekirdekte de protein sentezi yapıldığı gösterilmiştir. Sitoplazmik protein sentezi , endoplazmik retikuluma bağlı ya da serbest polizomlar üzerinde gerçekleştirilir. Bunun dışında mitokondriler ve klorolapstlar , kendi özel ve bağımsız protein sentez sistemine sahiptirler. Bunların protein sentezi , sitoplazmanın protein sentez aktivitesini yükseltebilir. Mitokondrilerin protein sentez düzeneği , özellikle kanserli dokularda belirli olarak değişmiştir.
Peptit sentezinde ilk adım , amino asitlerin sitoplazma içerisindeki bir enzim (sentetaz)sistemi ile uyarılmasıdır. Her aminoasit çeşidini uyaran özel bir enzim bulunur. Enzim ilk olarak aminoasit(AA)ve ATP’yi katlizleyerek , aminoasit adenilik asit bileşimine (AA-AMP)döndürür; ortaya ayrıca pirofosfat çıkar. Aynı enzim , aminoasidin kendine özgü tRNA’ya bağlanmasını da sağlar ve sonuçta tRNA-aminoasitle , serbest adenilik asit ortaya çıkar.
mRNA’nın üzerindeki bilgiye göre aminoasitlerin dizilmesi , aminoasit-tRNA bağlanmasını özgüllüğüyle sağlanabilir. Öyle ki , örneğin , bir sistein ile onun spesifik tRNA’sı (sistein-tRNAsis) birbirine bağlanırsa ve daha sonra sistein alanine çevrilirse; alanin,aynı transfer RNA’ya bağlı kalır, yani bu kompleks alanin-tRNAsis olur. Bu molekül ikilisi , protein sentez sistemine eklendiğinde , peptit zincirinde sisteinin bulunması gereken bütün yerlere , alaninin yerleştiği görülür. Bu deneme protein zincirindeki , aminoasitlerin yerine dikte ettiren sistemin , spesifik-tRNA ‘kar olduğunu , buna bağlı aminoasitlerin hiçbir rol oynamadığını gösterir. Ancak kendi özel tRNA’sına bağlı aminoasitler ribozoma transfer edilir.
Ribozomların göevi , aminoasit-tRNA’nın ve büyüyen polipeptit zincirinin yönünün yönelimini belirli özellikler içinde sağlamaktır.Ancak bu şekilde kalıp üzerindeki genetik kod doğrulukla okunabilir.Bu ribozomda bir defada yalnız tek bir polipeptit zinciri oluşur.Protein sentezi için gerekli kalıp mRNA dır ve iki kollu DNA’nın yalnız tek bir kolunda meydan gelir.Bu mRNA çekirdeği terk ederek sitoplazmaya geçer ve orada ribozomlarla birleşir.Farklı hücrelerdeki ribozomların , kütleleri , rRNA’larını proteinlerine göre oranları , rRNA’larının oluşumu ve bileşimi farklıdır ; Fakat genel yapıları bakımından benzerlik gösterirler.
mRNA ancak ribozomlarla temasa geçtiği zaman okunabilir. Bu kontak yeteneğini ise ancak ikincil yapı (sarmal yapı) göstermeyen (iplik şeklinde olan) ribonükleik asitler sahiptir.Keza moleküllerinin sadece bir kısmı çift kollu yapı gösteren çekirdek asitleride messenger özelliği göstermez.Kontak işleminin yapılmasında , ribozom aktif bir partnerdir ve bilgi seçme yeteneği vardır.Öyle ki , ribozomlar ile homolog mRNA’lar arasında bir özelleşme vardır.Bitkisel virüslerden elde edilen RNA’lar E.coli ribozomlar tarafından normal koşullar altında messenger olarak , kabul edilmezler.Çünkü her ikisi homolog değildir.(aynı kökenden gelmemişlerdir)
Ribozomlar 1 M NH4 Cl’i bir ortamda yıkanırlarsa bu özgüllüklerini yitirir.Bu yıkanma sırasında f1 ,f2, f3 faktörleri diye adlandırılan proteinleri ortama verirler.f3 faktörü , homolog mRNA’nın (aynı kökten gelmiş gruplardaki mRNA) tanınması için özgülleşmiştir ve “bağlayıcı faktör” olarak adlandırılır.Bu faktör , mRNA’nın sedimantasyon sabitesi 30 S olan serbest ribozomal alt birimine bağlanmasını katelizer.

30 S + mRNA 30 S / mRNA

Heterolog messenger olarak adlandırılan , poliadenilik asit ve poliurudilik asit gibi monoton polinükleotit dizelerinden meydana gelmiş yapay mRNA’lar ancak tuz derişiminin yüksek olduğu ortamlarda , ribozomlar tarafından kabul edilirler.Bu durumda bağlayıcı faktörün bulunmasına artık gerek duyulmaz.
Protein sentezi özellikle tavşanların sadece tek bir protein yapan , yani hemoglobin sentezleyen , retikulosit hücrelerinde , oldukça ayrıntılı olarak çalışılmıştır.Beş veya daha fazla sayıda ribozom birbirlerine bir mRNA aracılığıyla bağlanmışsa , yani “Poliribozom” şeklinde iseler daha etkili olarak protein sentezlerler.Yapılan araştırmalarda , tek tek halde bulunan ribozomların , poliribozomların bir ucuna bağlandıkları , mRNA boyunca yavaş yavaş hareket ettikleri ve bu hareketleri sırasında , eklenen uygun aminoasitlerle taşıdıkları polipeptit zincirinin büyüdüğü görülür.Böylece ribozomların mRNA boyunca bilgiyi okuyarak gittiği görülür.mRNA’nın tüm şeridi okuduktan sonra , ribozom , mRNA zincirinin ucundan ayrılır ve yeni bir mRNA’ya doğru hareket eder.
Bir genden bir dakika içinde ortalama bir mRNA çıkar ve sitoplazmada ortalama 240 dakika yaşar. Bu demektir ki , hücrede 240 sayısı sabittir.Bir mRNA’dan yapılan enzim sayısı ise daha azdır.Çünkü protein sentezi daha yavaş yürür.(her beş dakikada bir tane). Dolayısıyla enzimlerin ortalama ömrü uzamıştır.(20 saat kadar)Buna göre bir mRNA’dan 20 * 60/5 = 1200/5 = 240 enzim meydana gelir.Hücrede 240 mRNA bulunduğundan , enzim sayısı240 * 240 =57.600 enzimdir.Dolayısıyla DNA şifresi mRNA ile sadece kopya edilemez aynı zamanda onun aracılığıyla da çoğalmış olur.Bir mRNA aynı anda iki ribozoma kalıplık yapabilir ; öyle ki , molekülün bir ucu protein sentezini bitirirken , öbür ucu diğer bir ribozoma bağlanmış ve protein sentezini başlatmış olabilir.Büyüyen peptit zinciri her zaman orijinal ribozomuna bağlı olarak kalır , diğer bir ribozoma transferi söz konusu değildir.Replikasyonun , gen transkripsiyonunun ve protein sentezinin tüm işleyişi , pürin ve pirimidin baz çiftleri arasındaki zayıf hidrojen bağlarına göre düzenlenir.Bu bağların özgüllüğü , işleyişin doğru yürümesini sağlar ve herhangi bir yanlışlığın olma olasılığı %0.1 ‘den çok daha azdır.
mRNA’daki şifreye göre binlerce aminoasidin birleşmesinden polipeptit zincirleri meydana gelmektedir.Ne bir fazla ne bir eksik aminoasit eklenebilir. Aksi taktirde canlının alışık olmadığı proteinler oluşur ve bu da antikor oluşumuna neden olur.(allerjik tepkimeler meydana getirerek). Bunun için ayrıca bir ‘Kontrol Mekanizması’ vardır. Eğer protein sentezinde bir aminoasit bulunmazsa ya da yanlış düzenlenirse , sentez çok defa devam etmez ve genellikle protein temel elemanlarına kadar yeniden parçalanır. Bu yıkılım , enzimler tarafından yapılır. Bir protein sentezinin tamamlanabilmesi için , ribozomun son kontrolünü yapıp , sağlam vermesi gerekir. Hatta mRNA bozuk olduğunda , mRNA’nın kendisi yok edilir. Bir gen tarafından devamlı bozuk mRNA çıkarılıyorsa , çok defa , o genden gelen bütün mRNA’lar toplanıp sitoplazmada yok edilir ya da herhangi bir şekilde çıkmaları önlenir. Her peptit bağının kuruluşu bir ATP , yani 7.300 kaloriye gereksinme gösterilir. Bu nedenle , yanlış sentezlenmeler büyük enerji kabına neden olacağı gibi , parçalanmalarından meydana gelen fazla enerji de hücreleri öldürebilir.

==============PROTEİN SENTEZİNİN BAŞLAMASI=============
Bağlayıcı faktör f3’ün aracılığıyla mRNA , translasyona (çevirime) hazırdır. Eğer anlamlı bir protein oluşacaksa , emre hazır bilginin tümüyle tercüme edilmesi zorunludur.mRNA’nın bir kısmının , örneğin ortasının tercüme edilmesi , ancak bir protein parçasının meydana gelmesine ve bunun da kural olarak başındaki ve sonundaki eksik aminoasit diziliminden dolayı inaktif olmasına neden olacaktır.
En basitinden sentezin başlama noktasını saptayan yerin mRNA’nın bir ucunda bulunması ve ribozomların bu noktadan itibaren mRNA’ları tanıması gereklidir. Bu durumda 5’ ucundan 3’ ucuna doğru translasyonun yapılmasını zorunlu kılacak bir düzenek olmalıdır. Doğada , serbest 5’ ucun translasyonun başlama noktası olarak herhangi bir rolü olmadığı saptanmıştır.
Başlama noktasının saptanması için yapılan araştırmalar , belirli aminoasitlerin , N terminalinde daha sık bulunduğunu , özellikle methioninin ve daha seyrek olmak üzere sırasıyla ala , ser , thr , glu’nun bulunduğunu göstermiştir. Bu gözlemden , belirli bir aminoasitin ya da daha seyrek olarak bazı aminoasitlerin , protein sentezinin başlama noktasını işaretlediği varsayılmıştır. Bakterilerde , methioninin başlangıç aminoasiti olarak işlev gördüğü saptanmıştır.Methionin , ilk olarak özgül sentetazlarının yardımıyla iki farklı tRNA üzerine taşınır.

 

F-Sentetaz Meth-t-RNAf % 70

Methionin

M-Sentetaz Meth-t-RNAm % 30
tRNAf (f = front = ön ) , başlama noktalarına bağlanır. Tüm methioninin %70’i bu tRNA’lara bağlanmıştır. Geri kalan %30’u sentez edilecek protein zincirinin ortasında bulunacak (uçtakiler değil) methioninden sorumlu olan tRNAm ( m = middle = orta)’ya taşınır. Ancak tRNAf üzerinde bulunan aminoasit daha sonraki kademede 10-formiltetrahidrofol asit-transformilazla formillendirilir. Bu formilaz daha önce değindiğim f1—-f3 faktörleri gibi ribozomlarla bağlanmış bir proteindir.
Başlangıç aminoasidi , oluşan proteinler için genellikle herhangi bir öneme sahip değildir. Aksi taktirde , proteinlerin büyük bir kısmın ya da hepsinin N-terminal pozisyonunda (ucunda) methionin aminoasidi bulunmalıdır. Bu aminoasid , çoğunlukla özel bir enzimle deforme edilir ya da tamamen parçalanır. In vitro (hücresiz ortamda) , formüllendirilmemiş met tRNA’lar mRNA’nın ortasındaki AUG kodonu tarafından kabul edilmez.Bu nedenle tRNAf ‘nin başlama noktasını saptama özelliği sadece formil grubundan gelmemekte , ayrıca , kendine özgü bir yapıya sahip olmasından ileriye gelmektedir. Büyük olasılıkla , formil-met-tRNAf’nin bağ sağlamlığı , ribozom üzerindeki formil grubları aracılığıyla kuvvetlendirilmektedir. Aynı işlevler başlama aminoasid olduğu tahmin edilen N-asetil-fenil-tRNA ve N-asetilvalil-tRNA için de geçerlidir.
Formillendirilmiş methionil-tRNAf’nin monte edilmesi , mRNA üzerindeki AUG ve GUG kodonları ile olur. Formillendirilmemiş met-tRNAm , yalnız AUG kodonu tarafından tanınır.
Bağlanma (tutunma), f1 ve f3 faktörlerinin , AUG (ya da GUG) başlama tripletlerinin , GTP’nin ve Mg iyonlarının bulunduğu ortamda en fazladır.Başlama faktörlerini aktive edilmesi için yalnızca GTP (nukleozittrifosfat)’nın bulunması yeterlidir.GTP’den fosfor asid ayrılmaz çünkü GTP , 5-guanilildifosfonat ile yenilenebilir. Yapay polinukleotitlerle ve özellikle başlama kodu eksik olanlarla , normal koşullarda protein sentezi gözlenmemiştir bununla beraber , Mg++ derişiminin , inkübasyon ortamında , yaklaşık 20 mM’a yükselmesiyle , f faktörlerine gerek duyulmadan protein sentezi başlatılabilir.
Burada dikkate çekilecek husus , başlama olayına ribozomun küçük alt biriminin katılmasıdır.Formil-methionil-tRNA’nın AUG ya da GUG kodonu aracılığıyla başlama kompleksine montesi akla bir soru getirmektedir.mRNA’nın ortasındaki AUG kodonu başlangıç kodonu olarak kullanılan AUG kodonunda nasıl fark edilebilmektedir? Çünkü her iki kodonda meteonini kodlar. Bu ayrım , ribozom büyük alt birimlerinin olmadığı durumlarda meydana gelen başlama kompleksini özelliğinden ileriye gelmektedir.Çünkü tam bir ribozom üzerine , formil-methionil-tRNAf bağlanmaz. Sentezlenen peptit zincirinin içine methionil-tRNAm bağının monte edilmesi ise , yukarıdaki durumun tersine , ancak her iki ribozomal alt birimin bulunmasına ; yani tam bir ribozom oluşumuna bağlıdır. Bu , bize ribozomların neden iki as birimden meydana geldiğini açıklar.Çünkü 30S’li partikül yalnız başlama için , tam bir ribozomun oluşumu ise sürekli ve doğru bir translasyonun yapılması için gereklidir.Bu sistem ya da düzenlenme mRNA’nın rasgele bir noktasından itibaren translasyonunu önler.
Ancak başlama kompleksinin oluşumundan sonra , tam bir ribozom meydana gelir ve protein sentezleyen sistem işleyişine hazır olur.Protein sentezinde ribozomların özelliğini anlayabilmek için , ribozomların üzerinde farklı bölgeler tanımlanmış ve aşağıdaki gibi isimlendirilmiştir;

a-) Giriş ( = akseptör tarafı =decoding tarafı ya da aminoacil tarafı )
b-) Çıkış ( =donnor tarafı =condensing tarafı ya da pepdidil tarafı )

Eğer AUG ya da GUG başlama kodonunu bir mRNA ribozom ile bağlanırsa , başlama kodonları ribozomların girişine yerleşir. ( ya da başlama kodonlarının yerleştiği yer ribozomların girişi olur.) Başlama faktörlerinin aracılığıyla meydana gelmiş olan formil-metionil-tRNAf (başlama kompleksinin oluşumu ) ikinci kademede ribozomun çıkış noktasına doğru itilir.Bu itiliş , 30S’lik ribozomal alt birimin üçüncül yapısının geçici olarak değişmesine neden olmasının yanı sıra başlangıç kompleksinin kalitatif (niteliksel) olarak değişmesine de neden olur. Ribozom çıkışını doğru kaymış olan formil-methionil-tRNAf büyük alt birimi küçük alt birimle birleşerek tam bir ribozom oluşturmasına olanak verir. Başlangıç kodonu ribozomun çıkışına yaklaşırken ya da çıkarken , ikinci kodon ribozom girişine yaklaşır ya da girer ve aynı olaylar t4ekrarlanır. Protein sentezi için, ribozom üzerinde , büyük bir olasılıkla daha başka , aktif bölgeler mevcuttur; örneğin amino-açil-tRNA türlerinin girişi için bir “Kanal Bölgesi”serbest tRNA ve peptit zincirlerinin savrulması için de bir “Fırlatma Bölgesi” mevcuttur.

==============TRANSFER ENZİMLERİN ROLÜ=============

Başlama olayının dördüncü kademesinden sonra , başlama kodonu izleyen ikinci baz tripleti kendi aminoaçil-tRNA’sını kabule hazırdır. İç aminoasitlerin montesi için , her zaman , bazı faktörlere gereksinim vardır. Bunlar, ultra santrifüjle fraksiyonu yapılan hücre ekstraktının , süpernatant 100.000 * g. , kısa adıyla s-100 denen maddelerinin içerisinde çözülmüş olarak bulunur. Ribozomlarla bağlanan (yığışım yapan) f, bağlama ve başlama faktörlerinin aksine, daha sonra diğer bir hücre kompartimentinden elde edilir.
Protein sentezinin beşinci kademesinde , ikinci aminoasit, tam (komple) oluşmuş ribozomun girişine bağlıdır. Bu adım, bir T( transferden gelme) faktörünün ve parçalanmamış GTP’nin bulunduğu ortamda gerçekleşir. T faktörünün özellikleri , büyük ölçüde , f1 faktörünün özelliklerine benzer. Bu faktör , f1’in aksine, başlama kodonunu değil, diğer kodonları tanır. Adı geçen T faktörü bir termosta bil ( Ts) = ısıya dayanıklı ) ve birde termosta bil olmayan (Tu) = ısıya dayanıksız) iki kısma ayrılır. Ts , Tu ile GTP’nin yığışımını katalizler ve daha sonra aminoacil-tRNA ile stabil (dayanıklı)bir yapışma , tutunma kompleksi oluşur.

 

GTP + Tu Ts GTP/Tu

Aminoaçil-tRNA
GTP/Tu GTP/Tu /aminoaçil-tRNA

Tutunma kompleksi , ribozomun giriş tarafı üzerindeki ikinci kodon ile bağlanır. T faktörünün , ayrıca , kodon ile3 anti kodonunun karşılıklı etkileşiminde , sabitleştirici bir özelliğe sahip olup olmadığı bilinmemektedir.
Daha sonra , altıncı kademede , girişte bulunan aminoacil –tRNA , çıkış bölgesine doğru kayar. Bu translokasyon(yer değiştirme9 , ribozomun üçüncü yapısının tekrar değişmesi ve bağlı GTP’deki bir fosfatın kullanılması ile gerçekleşir. Parçalanma ribozoma özelleşmiş bir GTPaz’ın ortaya çıkmasını sağlar. Bu GTPaz , faktör G , yani “Translokaz” (bazı hallerde yanlış olarak peptit sentetaz şeklinde kullanılır) olarak tanımlanmıştır.
Hem T faktörü , hem G faktörü , hayvanlardaki protein sentez sistemleri içinde bulunan aminoaçil transferazlara büyük ölçüde uygunluk gösterir; fakat aynı değildir. Transferaz-I , bakteriyel T-faktörü gibi, transferaz-II ise G faktörü gibi davranır. Transferaz-I , keza “Bağlama enzimi” olarak da tanınır.
Sentetazların ve bağlayıcı faktörlerin canlı gruplarına göre gösterdikleri özgüllük gibi transferaz faktörler de keza ancak homolog (kököndeş) ribozomlarla tepkimeye girer. T ve faktörleri ancak bakteriyel ribozomlarla (hayvanlarınkiyle , özellikle memeli hayvanlarınkiyle değil) transferaz-I ve II ise ancak hayvansal ribozom larla (bakteriyel ribozomlarla değil) bağ yapabilir. E coli ribozomlarında hem G hem T görevini yüklenmiş bir polimerizasyon faktörü tanımlanmıştır.; bu faktörün aktivitesi , G ve T faktörlerinde olduğu gibi birbirinden ayrılmış durumda değildir.
İkinci aminoasidin tRNA’sını mRNA’ya bağlanmasından sonra , bunu ribozom üzerinde 1. ve 2. aminoasitlerin birbirine bağlanması “peptit bağı” izler. Bu bağlanma kendiliğinden meydana gelen bir olay değildir. tRNA’ya bağlı aminoasitteki enerji , peptit bağı için yeterlidir. Çünkü peptit bağlarının gerek duyduğu serbest enerji , aminoacil-tRNA bağında bulunan enerjiden çok daha azdır. Bu peptit bağının oluşumu , ribozomlarda protein olarak bulunan 50 S alt birimi üzerine gömülmüş “peptidiltransferaz “ denen bir enzim tarafından katalizlenir. Peptit bağı , bir aminoasidin amino grubunun başka bir aminoasidin karboksil grubuna bağlanmasıdır.
========SON ÜRÜNLERLE ENZİM İŞLEVLERİNİN DÜZENLENMESİ=========
———-( = ALLOSTERİK PROTEİNLER )———

Düzenleme mekanizmasının ilk adımı , enzim sentezinden ziyade , mevcut enzimin aktivitesinin düzenlenmesidir. Bu şekildeki bir düzenleme ( = son ürünle durdurma ) , aşağıdaki gibi yürütülür. Örneğin bakterilerde , arjinin , en azından dört kademelik bir tepkime zincirinin sonunda sentezlenir.Bunun için dört enzime gereksinme duyulur. Bu enzimler , sırasıyla , giriş maddesini adım adım değiştirerek , sonuçta ürün olarak arjinini yaparlar.Ortama hazır arjininin eklenirse , arjinin sentezleme mekanizması baştan itibaren durdurulur.
Bundan çıkarılan sonuç : Eğer bakteriler dışarıdan hazır son ürün sağlayabilirse , ilk adımda ilgili enzimlerin aktivasyonunu durdurmaktır.Çünkü bu durumda yapılacak hücre özütleri , gerçekte , bu sentezlemeyi sürdürecek enzimlerin hücrede in aktif olarak hala mevcut olduğunu göstermektedir.Bazı kalıtsal hastalıklarda , sentez zincirinin belirli kademelerinde kesinti olmakta ve ara ürün hücrede , artık , ara kademe ürünlerinin de oluşmadığı görülür.Yani yeterince sağlanan son ürün , tüm sentez dizisinin işlevini başından itibaren durdurur.
Enzim kimyasında , uzun zamandan beri , bir enzimin ya da sentez zincirinin işlevinin son ürüne benzer maddelere (kompetitif = aldatıcı moleküller ) durdurulabileceği ya da bloke edilebileceği bilinmektedir.Aldatıcı moleküller , enzimin özelleşmiş (spesifik) yerine bağlanır ve böylece , enzim , in aktive olur.
Bu şekildeki enzimlerde yani son ürünle ya da benzeri maddelerle denetleyebilir enzimlerde iki özelleşmiş bölgenin bulunduğu varsayılır. Bir tanesi substrat’a diğeri denetleyen ya da düzenleyen maddeye ( genellikle son ürüne = effektöre ) bağlanabilir.Effektörün (son ürünün ) ortamda birikmesi ve sonuçta enzimin özelleşmiş bir yerine bağlanması , enzimin , substrat’a bağlanmasını sağlayan kısmının yapısının değişmesine neden olur ve enzim bloke edilir. MONOD ve JACOB , bunu , “Allosterik Etki” olarak isimlendirmişlerdir.
Effektör enzim bağı kısa sürelidir. Yeterli son ürün , enzim moleküllerini bloke etmekle beraber ; miktarı azaldığında serbest kalan enzimler işlev görmeye başlar. Bu şekilde son ürün ile enzim arasında , son ürünün derişimine göre bir düzenleme sağlanmış olur.
Bir sentezleme zincirindeki tüm enzimlerin , allosterik olarak denetlenmediği , genellikle ilk kademedeki enzimin bloke edildiği bilinmektedir. Bu şekilde , hücre , daha ekonomik ve tutumlu olarak çalışabilir. Çünkü son ürünün ara kademede yer alan diğer enzimleri bloke etmesi , enerji ve madde yönünden savurganlık olur.
=============PROTEİNLERİN SİNDİRİMİ============

Proteinler , et , süt , yumurta gibi hayvansal besinlerle ; baklagiller ( fasulye , nohut , mercimek vb. ) gibi bitkisel besinlerde bol bulunan organik maddelerdir. Canlılarda , hücre zarlarını oluşturarak yapı maddesi , enzim ve hormonları oluşturarak düzenleyici madde , hücrede yeterli karbonhidrat ve yağ bulunmaması halinde de enerji hammaddesi olarak kullanılır. Vücuda alınan proteinlerin , hangi amaçla olursa olsun kullanılabilmeleri için , yapı taşları olan aminoasitlere parçalanmaları gerekir. Bu amaçla proteinlerin sindirimi mide de başlar , on iki parmak bağırsağında devam eder ve ince bağırsakta tamamlanır. Üç aşamada yapılan proteinlerin sindirimi aşağıdaki gibi olur :
Midede : Yutkunma ve yemek borusunun peristaltik hareketleriyle besinler mideye iletilince , bazı mide hücreleri gastritin hormonu salgılar. Kandaki gastrin de mide öz suları salgılayan bezleri uyararak HCI salgılamalarını sağlar. Bir yandan da mukus salgısı ile mide çeperini tahrip etmemesi için in aktif durumda olan pepsinojen enzimi ve süt çocuklarında lap enzimi salgılanır.

Önce pepsinojen , HCI ile etkileşerek aktif bir proteinaz olan pepsin’e dönüşür :

Pepsinojen + HCI Pepsin

Pepsin de , proteinlere etki ederek ilk sindirim ürünü olan pepton ‘lara dönüştürür :

Pepsin
Protein + H2O Pepton (polipeptit )

Lap enzimi , süt çocuklarının emdiği sütün proteinini kazein halinde çöktürür :

Lap
Süt proteinleri Kazein + su

Kazein de pepsin etki ederek polipeptitlerle aminoasitlere parçalanır :

Pepsin
Kazein + H2O Polipeptit + Aminoasit

Mide öz sularıyla karışarak kimüs denilen bulamaç halinde gelen besinler , ortalama iki saat kadar sonra on iki parmak bağırsağına geçer. “ sindirim , on iki parmak bağırsağında devam eder.

 

 
PROTEİNLERİN SİNDİRİMİ İNCE BAĞIRSAKTA TAMAMLANIR

Kimüs , on iki parmak bağırsağına gelince sekretin hormonu salgılar. Sekretin , pankreası uyarınca salgılanan enzimlerle , hiç sindirilmemiş proteinlerin ve peptonların sindirimi on iki parmak bağırsağında ve ince bağırsakta olmak üzere iki aşamada tamamlanır.

1-) On iki parmak bağırsağında : Pankreasın in aktif durumundaki enzimi olan tripsinojen , bağırsaktaki bazı hücrelerin salgıladığı enterokinazla etkileşerek , aktif enzim olan tripsin’e dönüşür.

Tripsinojen Enterokinaz Tripsin

Aktif bir enzim olan tripsin de , mideden gelen peptonlara (polipeptitlere ) etki ederek onları peptitlere ve aminoasitlere dönüştürür.

Pepton (polipeptit) + H2O Peptit + Aminoasit

Besinler , kısa süre içinde on iki parmak bağırsağından ince bağırsağa geçerler.

2-) İnce bağırsakta :İnce bağırsak bezlerinin salgıladığı erepsin enzimi , on iki parmak bağırsağından gelen peptitlere etki ederek onları proteinlerin son sindirim ürünler olan aminoasitlere dönüştürür :
Erepsin
Peptit + H2O Aminoasitler

Oluşan tüm aminoasitler , ince bağırsaktaki villuslar tarafından emilerek kanla , karaciğere taşınıp oradan da dolaşıma katılır.

Düzgün Olmayan Cisimlerin Hacimleri
Düzgün geometrik yapıda olmayan katı cisimlerin hacimleri, dereceli kaplardaki sıvılardan yararlanılarak bulunur.
Bu tür cisimler tamamen sıvı dolu olan bir kaba batırıldığında, sıvıda erimemek şartıyla hacmi kadar hacimde sıvı taşırır. Eğer cisim tamamen batmıyorsa, taşan sıvının hacmi batan kısmın hamine eşit olur.

Tamamen dolu olmayan dereceli kaptaki sıvıya bir cisim atılırsa, cismin hacmine eşit hacimde sıvıyı yer değiştirir.
Eğer katı bir cisim sıvı içine atıldığında çözünüyorsa, cismin gerçek hacmini bulamayız. Çünkü, cismin katı haldeki hacmi ile sıvı haldeki hacmi eşit olmadığı gibi, katı içinde hava boşlukları olabilir ve eridiğinde hava çıkar ve hacim azalır.
Dereceli kapta bulunan kuru kumun üzerine su döküldüğünde, karışımın hacmi, su ve kumun ayrı ayrı hacimlerinin toplamından daha küçük olur. Bunun nedeni, kum tanecikleri arasında hava boşluğu olması ve suyun bu boşlukları doldurmasıdır. Buna göre, kumun gerçek hacmi, karışımın hacminden suyun hacmi çıkarılarak bulunur.
Hacim Birimleri
Hacim V sembolü ile gösterilir. SI birim sisteminde hacim birimi m3 tür. Pratikte maddelerin hacmini ölçmek için m3 ün alt katları olan cm3 ve dm3 kullanılır. Bir cismin hacmi bulunurken, üç boyutu çarpıldığı için, hacim birimleri de uzunluk birimlerinin küpü olarak ifade edili

Nükleer enerji

Nükleer enerji, atomun çekirdeğinden elde edilen bir enerji türüdür. Kütlenin enerjiye dönüşümünü ifade eden, Albert Einstein’ a ait olan E = mc2 ( E:Enerji, m:kütle , c:Işığın hız sabiti) formülü ile ilişkilidir. (Atom kütlesinin enerjiye dönüşümü)

Bununla beraber, kütle – enerji denklemi, reaksiyonun nasıl meydana geldiğini açıklamaz, bunu daha doğru olarak nükleer kuvvetler yapar. Nükleer enerjiyi zorlanmış olarak ortaya çıkarmak ve diğer enerji tiplerine dönüştürmek için nükleer reaktörler kullanılır.

Nükleer enerji, üç nükleer reaksiyondan biri ile oluşur:

1. Füzyon: Atomik parçacıkların birleşme reaksiyonu.
2. Fisyon: Atom çekirdeğinin zorlanmış olarak parçalanması.
3. Yarılanma: Çekirdeğin parçalanarak daha kararlı hale geçmesi. Doğal (yavaş) fisyon (çekirdek parçalanması) olarak da tanımlanabilir.

Nükleer enerji, 1896 yılında Fransız fizikçi Henri Becquerel tarafından kazara (uranyum maddesinin fotoğraf plakaları ile yanyana durması ve karanlıkta yayılan X-Ray ışınlarının farkedilmesi ile) keşfedilmiştir.

Uluslararası çevre örgütü Greenpeace’in kurucularından Patrick Moore’a göre, nükleer enerji karbon dioksit üretmediği için kömür yakan termik enerjiye göre daha çevreci bir alternatiftir.

Füzyon

Füzyon, Nükleer kaynaşma (füzyon), fizyonun (nükleer parçalanma) tersine, farklı iki element çekirdeğinin birleşerek daha ağır bir element atom çekirdeği oluşturmasıdır. Çekirdek Tepkimesi olarak da bilinen bu tepkimenin sonucunda çok büyük miktarda enerji açığa çıkar.

Füzyon tepkimeleri Güneş’te her an doğal olarak gerçekleşmektedir. Güneş’ten gelen ısı ve ışık, hidrojen çekirdeklerinin birleşerek helyuma dönüşmesi ve bu dönüşüm sırasında kütle kaybı karşılığı enerjinin ortaya çıkması sayesinde meydana gelmektedir. Kütle kaybının karşılığı enerjinin büyüklüğü Einstein’in ünlü E = mc² formülüyle rahatlıkla hesaplanabilir.

Fisyon

Atom fiziğinde Kararlılığı az ve büyük olan çekirdeklerin kararlı küçük çekirdeklere dönüşmesine fisyon tepkimesi denir. Bu olayda büyük miktarda enerji açığa çıkar. Bölünme tepkimeleri atom bombalarının yapımında ve nükleer santrallerde enerji üretininde kullanılır.Bu olayda nötronla bombardıman edilen U238 (uranyum) çekirdeği nötronu aldığı zaman kararsızlaşarak baryum 142 ve Kripton 91 e dönüşür bununla birlikte 3 nötron salar ve yüksek miktarda gamma ışıması yapar.Bu yaklaşık 25.000 ton kömürün enerjisine eşittir.Fisyon tepkimelerinde açığa çıkan enerji nükleer reaktörlerde kontrollü olarak kullanılarak enerji elde edilebilir.Ayrıca açığa çıkan alfa ve gama ışınları bilimsel deneylerde kullanılır.

Fisyon tepkimesinde açığa çıkan nötronlar ortamdan uzaklaştırılmazsa,tepkime zincirleme devam eder.

Fisyon tepkimeleri için birilk enerjiye(aktiflenme enrjisi) ihtiyaç vardır.

Ondokuzuncu yüzyılın sonlarında radyoaktivitenin ve radyoaktif atomların keşfinden sonra, bilim çevrelerinde bu yeni keşfe yönelik büyük bir ilgi ve merak oluşmuştur. Bazı bilim adamları bu keşfin tıp alanı üzerinde kullanımı üzerinde yoğunlaşırken, diğer bazı bilim adamları da radyasyonla ilgili süreçlerin enerji kaynağı olarak kullanılıp kullanılamayacağını merak etmiştir. İkinci Dünya Savaşının hemen öncesinde, Uranyum gibi dev atom çekirdeklerin bölünmesini içeren “fisyon (bölünme)” ve helyum gibi küçük atom çekirdeklerinin kaynaşmasını içeren “füzyon (kaynaşma)” tepkimelerinin keşfi ile beraber, daha önce hiç hayal bile edemeyeceklerdeki boyutlarda enerjinin üretilebileceği anlaşılmıştır. 2 Aralık 2942 tarihinde, Chicago Üniversitesinde, Enrico Fermi ve arkadaşları kurdukları uranyum düzeneğinde zincirleme tepkimeyi gerçekleştirip, nükleer enerjinin büyük miktarlarda, sürekli ve kontrollü bir şekilde ortaya çıkartılabileceğini göstermesiyle beraber “nükleer enerji” çağı başlamıştır. Bu tarihten sonra, dünyamız nükleer enerji ve ilgili diğer yan bilim dallarının baş döndürücü bir hızla ilerlemesine şahit olmuştur.

Kaynaklar
-http://www.nukleer.web.tr/
-http://tr.wikipedia.org/wiki/N%C3%BCkleer


bursa evden eve nakliyat
Bedava İlan Verme